Characterization of the PULSTAR Ultracold Neutron Source

Graham Medlin

Department of Physics North Carolina State University glmedlin@ncsu.edu

Tuesday 28th March, 2017

Crystal growth study

G. Medlin

PULSTAR Ultracold Neutron Source

Outline

1 Introduction

- UCN
- Example experiments
- Production
- 2 Neutron transport model
- 3 Source commissioning
- 4 Crystal growth study

Neutrons

Temperature	Energy (V) Velocity (m/s)		Wavelength
10 ¹¹ K	20 MeV		62000~km/s	6 fm Nucleus
	10 ⁶	Fast	0.05c	1100000
10 ⁹ K	0.1 MeV		4400 km/s	0.1 pm
	10 ³	Slowing down	10 ⁶ Vovager 1	
11 600 K	1 eV		14 km/s	30 pm
		Thermal	Low orbit	H atom
293 K	25.3 meV	Thermal	2200 ^m /s	0.18 nm
	10 ⁻³	Cold	10 ³ Sound	U atom
1 K	60 µeV		110 m/s	4 nm
	10 ⁻⁶	VCN	Usain Bolt	CPU node
0.003 K	250 neV		7 ^m /s	60 nm
1^{st} gravitational state $1.4 \text{peV} \downarrow 10^{-8}$		UCN	Walking 1	Violet light

$$E = \frac{1}{2}mv^2 = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2}{2m\lambda^2}$$

- Fast neutrons produced in fission and spallation sources
- Moderate to thermal / cold
- Maxwell-Boltzmann temp.

 $E\sim k_{\rm B}T$

"Convert" to UCN

T. Jenke, H. Abele (2014)

Ultracold neutrons (UCN)

$$E_{
m ucn} \leq V_{
m m} = n rac{2\pi\hbar^2}{m_n} \sqrt{rac{\sigma_{
m tot}}{4\pi}}$$

- Magnetic moment $V_B = \vec{\mu}_n \cdot [\vec{B} = 1 \text{ T}] \sim 60 \text{ neV}$
- Earth's gravity, ballistic trajectories $V_g = m_n g[h = 1 \text{ m}] \sim 100 \text{ neV}$
- Can prepare mixtures of discrete gravitational states
- ► Store neutrons for ~100 s-880 s
- Most UCN experiments statistics limited

Neutron electric dipole moment (nEDM)

- C. Baker, et al. (2014)
- Frequency shift $\delta \nu_0$ from (anti)parallel fields $h\nu_0 = -2\mu_n \left| \vec{B}_0 \right| \mp 2d_n \left| \vec{E}_0 \right| \rightarrow d_n = h\delta\nu_0/4E_0$ $\sigma_d \approx \frac{h}{2\alpha FT\sqrt{N}}$
- ILL-Sussex-RAL: 545 runs of 1-2 days 2.5×10^9 neutrons $d_n = (-0.21 \pm 1.82) \times 10^{-26} \,\mathrm{e} \cdot \mathrm{cm}$ $\sigma_{\rm stat} = \pm 1.53 \times 10^{-26} \, {\rm e} \cdot {\rm cm}$

J. M. Pendlebury, et al (2015) PhysRevD.92.092003

Correlation A with UCN (UCNA)

J. D. Jackson, et al. (1957) 10.1103/PhysRev.106.517

 $\omega(\langle J \rangle | E_{e},\Omega_{e},\Omega_{e})dE_{e}d\Omega_{e}d\Omega_{r}dE_{e}d\Omega_{e}d\Omega_{r}dE_{e}(E^{0}-E_{e})^{2}dE_{e}d\Omega_{e}d\Omega_{e}d\Omega_{e}\xi\Big| 1 + \frac{\mathbf{p}_{e}\cdot\mathbf{p}_{r}}{E_{e}E_{r}} + \frac{\mathbf{b}_{e}}{E_{e}} + c\Big[\frac{1}{3}\frac{\mathbf{p}_{e}\cdot\mathbf{p}_{r}}{E_{e}E_{r}} - \frac{(\mathbf{p}_{e}\cdot\mathbf{j})(\mathbf{p}_{r}\cdot\mathbf{j})}{E_{e}E_{r}}\Big]\Big[\frac{J(J+1)-3\langle \langle \mathbf{J}\cdot\mathbf{j}\rangle^{5}}{J(2J-1)}\Big] + \frac{\langle \mathbf{J}\rangle}{J} \cdot \Big[A\frac{\mathbf{p}_{e}}{E_{e}} + B\frac{\mathbf{p}_{e}}{E_{e}} - \frac{\mathbf{p}_{e}\cdot\mathbf{p}_{r}}{E_{e}E_{r}}\Big] + \frac{\langle \mathbf{p}_{e}\cdot\mathbf{p}_{r}}{E_{e}E_{r}}\Big] + \frac{\langle \mathbf{p}_{e}\cdot\mathbf{p}_{r}}{E_{e}E_{r}}$

- β -decay is asymmetric, P violating
- Weak interaction coupling constants
- Polarized free neutrons

$$\begin{split} W(E) \propto 1 + \frac{v}{c} \left\langle P \right\rangle A(E) \cos \theta \\ A_0 &= \frac{-2(\lambda^2 - |\lambda|)}{1 + 3\lambda^2} \text{ and } \lambda \equiv \frac{g_A}{g_V} \end{split}$$

► LANL UCNA A₀ = -0.11945(55)_{stat}(98)_{syst}

Systematic	Corr. (%)	Unc. (%)
Polarization	+0.67	± 0.56
$\Delta_{\text{backscattering}}$	+1.36	± 0.34
Δ_{angle}	-1.21	± 0.30
Energy reconstruction		± 0.31
Gain fluctuation		± 0.18
Field non-uniformity	+0.06	± 0.10
€ _{MWPC}	+0.12	± 0.08
Muon veto efficiency		± 0.03
UCN-induced background	+0.01	± 0.02
$\sigma_{\text{statistics}}$		± 0.46
Theory c	ontributions	
Recoil order [21–24]	-1.71	± 0.03
Radiative [25,26]	-0.10	± 0.05

M. Mendenhall (2013) 10.1103/PhysRevC.87.032501

Gravity resonance spectroscopy (GRS)

- Oscillating mirror driving transitions between states matches resonance
- Energy sensitivity of 10⁻¹⁴ eV
- Place limits on dark energy/matter, new interactions
- Limited by statistical uncertainty, tiny phase-space
- "qBounce" at ILL: 1 count per minute

T. Jenke, et al. (2011) 10.1038/NPHYS1970, (2012) arXiv:1208.3875, (2014) 10.1016/j.phpro.2013.12.016

"Traditional" production

 Present in tail of moderated Maxwell-Boltzmann distribution

$$\Phi(E) dE = \Phi_o \frac{E}{\left(k_{\rm B}T\right)^2} e^{\left(-E/k_{\rm B}T\right)} dE$$

Cold moderator, vertical extraction, turbine

- ► ILL PF2 4 × 10⁶ UCN/s and >36 UCN/cm³
- ► Flux limited by Liouville's theorem $\frac{d}{dt}\rho(\vec{r},\vec{p};t) = 0$

I. Altarev (1986) JETPL

Steyerl, et al. (1986) 10.1016/0375-9601(86)90587-6

"Superthermal" superfluid helium source

- R. Golub & J. Pendlebury (1977) production by downscatter off Landau roton
- Steady-state UCN density in converter

$$\rho = P \cdot \tau$$
 where $\tau^{-1} = \sum \tau_i^{-1}$

- *τ*_{β-decay} = 880 s
- Upscatter $\tau_+ \sim \exp{(11 \text{ K}/T_{\text{He}})} \rightarrow T_{\text{He}} < 0.7 \text{ K}$
- ³He/⁴He <10¹²
- \(\tau_{wall}\) also

Solid candidates

Solid phonons can increase production, utilize broader energy range

$$\mathrm{S}_{\mathrm{inc}}^{\mathrm{+1ph.}}(\vec{Q},\omega) \propto rac{1}{M} \mathrm{e}^{-2W(\vec{Q})} rac{Z(\omega)}{\omega} \langle n+1 \rangle \quad \mathrm{and} \quad rac{Z(\omega)}{\omega} \propto rac{\omega}{\left(\Theta_{\mathrm{D}}
ight)^{3}}$$

Isotope	$\sigma_{ m tot}$	$\sigma_{\rm abs}$	Θ_{D}	Contaminate	$\sigma_{\rm abs}$
⁴ He	1.34	-	20	^з Не	5300
H ₂	82.03	0.33	120	-	-
D_2	7.64	$5.2 imes 10^{-3}$	110	Н	0.33
¹⁵ N ₂	5.21	$2.4 imes10^{-5}$	80	¹⁴ N	1.91
¹⁶ O ₂	4.23	$1.6 imes 10^{-3}$	104	¹⁷ O(0.038%)	0.236
²⁰⁸ Pb	11.34	$4.8 imes 10^{-3}$	105	²⁰⁷ Pb	0.699

C.-Y. Liu (2002) Thesis

Potential molecules? e.g. CD₄

Solid deuterium source

- Order of magnitude faster production than helium
- Nuclear absorption limited

 $\tau_i^{-1} = n_i v \sigma_i(v)$

- ► $\tau_{\text{o-D}_{7}} = 150 \text{ ms} \rightarrow \text{UCN}$ extraction \rightarrow crystal growth study
- ▶ Diminishing returns <5 K → Maintain 5 K under reactor heat</p>
- $\tau_{p-D_2} = 1.5 \text{ ms} \rightarrow \text{Pre-convert para-} D_2 \rightarrow \text{spin converter}$
- ▶ $\tau_{H_2} = 250 \, \mu s \rightarrow \text{Limit on } H_2 \rightarrow \text{Raman spectroscopy}$

PULSTAR UCN source

- Thermal column of 1 MW PULSTAR reactor
- Graphite port to transport core neutrons
- 680 L heavy water thermal moderator tank
- 1.4 L ~40 K, cup-shaped, methane cold moderator
- 1 L of 5 K solid deuterium UCN converter

Introduction

2 Neutron transport model

- 3 Source commissioning
- 4 Crystal growth study

Neutron transport

Goal: Calculate UCN production

- Model fission, transport, and moderation in MCNP
- Benchmark model against activation measurement
- Generate temperature-dependent methane kernel with NJOY
- Model cold spectrum available for UCN production
- Fold with UCN production cross section

Monte Carlo N-Particle (MCNP)

Monte Carlo method

- Random sampling approx. analytical solution
- Fire 10⁸ neutrons at a disk inscribed square

 $4(tally) = 3.14146 \pm 0.0004$ vs. $\pi = 3.14159...$

28 neutrons <25 meV to ${\rm sD}_2$ per 20 000 generated

- Generate particle, calculate next surface intersection
- Material sets collision, interaction probability, e.g. free gas or S(α, β)
- Particles tallied at virtual detector

MCNP model

- Existing PULSTAR model
- Criticality calculation (KCODE)
- Benchmarked against thermal column

$$\frac{\Phi}{(\text{tally})} = P \frac{\bar{\nu}}{Q} = (1 \text{ MW}) \left(\frac{2.46 \text{ n/fission}}{200 \text{ MeV/fission}} \right)$$

- Add transport system, test tank geometry
- Standard ENDF material libraries

Activation measurement

- ► Gold foil neutron activation ¹⁹⁷₇₉Au + n → ¹⁹⁸₇₉Au → ¹⁹⁸₈₀Hg + e⁻ + γ $R = N_o \int dE \sigma_a(E) \Phi(E)$
- Cadmium strongly absorbs <0.5eV
- Gold cross-section 1/v below cutoff
- Assume moderated flux

 $\sigma_a(E) = \sigma_a^o \sqrt{kT_o/E}$ $\Phi(E) \propto E \exp\left(-E/kT_o\right)$

- Test tank simulates source tank
- Foils alternately cadmium-shielded

Thermal neutron results

- 80% reduction without shielding box
- 15% disagreement with shielding box
- Shape agrees
- 30% reduction due to void

Epithermal correction

- Significant epithermal flux
- Maxwellian assumption under-represents epithermals
- Using MCNP spectrum, ~1%
- MCNP acceptably benchmarked

G. Medlin

PULSTAR Ultracold Neutron Source

Source commissioning

Source model & phase I methane

- Source modeled in MCNP
- Treated D₂ as vacuum
- Tallied avg. flux over converter

- Methane $S(\alpha, \beta)$ at 22 K library from LEAPR
- Harker & Brugger 1967 measurements
- No expected behavioral change >65-22 K
- Created libraries 22-60 K

Neutron transport model

Cold flux

G. Medlin

UCN production

- Production rate $6 \times 10^3 \text{ UCN/cm}^3 \cdot \text{s}$
- Density rough estimate...
 - 2% para
 - 0.13% H₂
 - 40 ms survival time
- 250 UCN/cm³

Outline

1 Introduction

- UCN
- Example experiments
- Production
- 2 Neutron transport model
 - MCNP model
 - Foil activation benchmarking
 - Methane temperature
 - UCN production
- 3 Source commissioning
 - Spin converter
 - Raman spectroscopy
 - Gas handling
 - Cryogenics

4 Crystal growth study

Molecular deuterium spin states

Quantum rotor, J = 1 state at 7.4 meV

$$E_J \approx \frac{\hbar^2}{2I} J(J+1) \to \Delta(\Delta E)$$

Independent para (J odd) ortho (J even) species

 $\left\{\psi_{\text{rotational}}\cdot\psi_{\text{spin}}
ight\}_{\text{symmetric}}
ightarrow\Delta J\pm 2$

- Total spin S = 0, 1, 2: 1,3,5-fold degenerate
- At low T, J = 1 still present

 $N_J \propto (2J+1)g_S \mathrm{e}^{-E_J/k_{\mathrm{B}}T}$

- Can upscatter UCN by spin flip, $J = 1 \rightarrow 0$
- Must convert para-deuterium prior
- Low temperature magnetic catalyst

Spin converter

- U-shaped copper cell
- Coaxial heat exchanger
- Installed without breaking seal
- Oxisorb and iron hydroxide catalysts
- Adsorbs >60 liters gas
- Vapor pressure not thermometer
- Expected para-content on gas panel

Raman spectroscopy

- Sensitive to rotation in diatomics
- Direct measurement
- Reference eliminates system dependencies

$$\begin{split} E_{J+2} - E_J &= hc\left(\frac{1}{\Lambda} - \frac{1}{\lambda}\right)\\ r &= \frac{1}{2}\frac{I_{\text{para}}^{\prime}/I_{\text{ortho}}^{\prime}}{I_{\text{para}}^{\prime}/I_{\text{ortho}}^{\prime}} \end{split}$$

Raman spectra

- More sensitive to H₂, in these samples, stricter limit than HD
- Could put limit on O₂, N₂

Gas handling

- High-purity, flexible design
- Remains at saturation during liquefaction
- Passive gas return

Helium system

- Hybrid liquefier and refrigerator, modified for continuous operation
- Demonstrated independent control of cooling loops
- Maintains cryostat temperature with electric heaters simulating reactor load

Outline

1 Introduction

- UCN
- Example experiments
- Production
- 2 Neutron transport model
 - MCNP model
 - Foil activation benchmarking
 - Methane temperature
 - UCN production
- 3 Source commissioning
 - Spin converter
 - Raman spectroscopy
 - Gas handling
 - Cryogenics

4 Crystal growth study

Crystal growth study

- Elastic scattering shortens mean free path, impedes UCN extraction
- Other groups have observed method of crystal growth impacts production
- How do crystal properties affect UCN production in our source?
- Limited access when installed

Before neutrons, goals:

- Translate measured P/T into crystal T
- Temperature-gradient in crystal
- Optical transparency
- Effect of IR load

Neutron transport mod

Design

- Re-usable, install without disassembly
- Replace UCN foil window
- Pressure- SS bellows feedthrough
- Optical-"Dentist's mirror"
- IR- heated plate
- T-gradient- stand lowered from mirror

Neutron transport mode

Design

Solid movement

Above 10 K, high gradient in vapor pressure causes migration to cold spots

Video

Beginning sublimation

(A1) <5.4 K, 8.2 K, 10 mbar

(D1) 8.4 K, 16.2 K, 15 mbar

(C1) 9.5 K, 18.3 K, 40 mbar

(E1) 9.7 K, 17.8 K, 16 mbar

G. Medlin

PULSTAR Ultracold Neutron Source

Full inventories

(B2) Cold sublimation

(B5) Melt & re-freeze

(B4) "Annealed"

(C2) Warm sublimation

G. Medlin

PULSTAR Ultracold Neutron Source

Surface defects

(C2) Warm sublimation 2016:03:31 11:40:38

(C4) Pulsed heater 2016:04:02 13:38:26

(C5) Warming

G. Medlin

PULSTAR Ultracold Neutron Source

Crystal study conclusions

Optical

- Optically transparent from liquid or high temperature sublimation
- D₂ migration 10-18.7 K can create dome shape
- "Annealing" can alter crystal appearance
- Rapid temperature changes create surface irregularities

Temperature

- Center of container at He inlet is significantly colder
- Pressure accurately reflects surface temperature
- External sensors relationship is circumstance dependent
- Surface temperature increases with sublimated thickness
- Effect of larger IR load still unknown

Conclusion

Recap

- Current neutronics model
- Built and tested gas handling system, spin converter
- Completed and tested cryostat, helium system, Raman system
- Designed, built, ran crystal study

Current status

- Source
 - Chilled water improvement
 - Shielding and neutron safety review
- Neutronics model publication
- Crystal study publication?

Questions?

- Introduction
 - UCN
 - Example experiments
 - Production
- 2 Neutron transport model
 - MCNP model
 - Foil activation benchmarking
 - Methane temperature
 - UCN production
- 3 Source commissioning
 - Spin converter
 - Raman spectroscopy
 - Gas handling
 - Cryogenics
- 4 Crystal growth study

THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE.

EXTRA SLIDES

